Ensemble of multiple instance classifiers for image re-ranking
نویسندگان
چکیده
منابع مشابه
Dynamic Ensemble Re-Construction for Better Ranking
Ensemble learning has been shown to be very successful in data mining. However most work on ensemble learning concerns the task of classification. Little work has been done to construct ensembles that aim to improve ranking. In this paper, we propose an approach to re-construct new ensembles based on a given ensemble with the purpose to improve the ranking performance, which is crucial in many ...
متن کاملCascade of Multi-level Multi-instance Classifiers for Image Annotation
This paper introduces a new scheme for automatic image annotation based on cascading multi-level multiinstance classifiers (CMLMI). The proposed scheme employs a hierarchy for visual feature extraction, in which the feature set includes features extracted from the whole image at the coarsest level and from the overlapping sub-regions at finer levels. Multi-instance learning (MIL) is used to lea...
متن کاملLearning Curves for the Analysis of Multiple Instance Classifiers
In Multiple Instance Learning (MIL) problems, objects are represented by a set of feature vectors, in contrast to the standard pattern recognition problems, where objects are represented by a single feature vector. Numerous classifiers have been proposed to solve this type of MIL classification problem. Unfortunately only two datasets are standard in this field (MUSK-1 and MUSK-2), and all clas...
متن کاملExploiting Contextual Information for Image Re-ranking
asically, given a query image, a CBIR system aims at retrieving the most Bsimilar images in a collection by taking into account image visual properties (such as, shape, color, and texture). Collection images are ranked in decreasing order of similarity, according to a given image descriptor. However, in general, these approaches perform only and compute similarity (or distance) measures conside...
متن کاملMultiple instance ensemble learning method for high-resolution remote sensing image classification
Multiple Instance Learning Via Embedded Instance Selection (MILES) has shown good performance in dealing with noisy training samples, but its bag prediction rule may introduce new uncertainty into the remote sensing image classification results. In order to overcome this limitation, two popular ensemble learning strategies, Bagging and AdaBoost are integrated with MILES. Two methods are propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image and Vision Computing
سال: 2014
ISSN: 0262-8856
DOI: 10.1016/j.imavis.2014.02.014